
Whispering in the trees

Scaling go-carbon, the go-graphite stroage stack at Booking.com

Xiaofan Hu @ Booking.com

(note: puns intended in the title)

http://booking.com/
http://booking.com/

Context

What is Graphite

Graphite is a time-series database. It was originally written in python (mainly), the whole
tool consists of multiple components like:

frontend carbon API for returning timeseries data or graphite-web for rendering graph

relay (for scaling and duplicating data)

storage: carbon and whisper

admin tooling: buckytools

Graphite Metric Basics

An example of graphite metric: sys.cpu.loadavg.app.host-0001

An example of graphite retention policy and aggregation policy: 1s:2d,1m:30d,1h:2y
avg
size of the retention example: (86400*2 + 1440*30 + 24*730) * 12 = 2,802,240
bytes (the first archive accounts for 74% of its final size)

1s:2d is called an archive (same for 1m:30d and 1h:2y)

A typical graphite data point: 1600027497: 42 (a 32 bit timestamp and a 64 bit
value)

credit: https://github.com/graphite-project/whisper

https://github.com/graphite-project/whisper

Graphite at Booking

No longer a vanilla setup, various of components are rewritten (some more than once), for
example:

carbonapi/bookingcom fork, rewritten by Damian Gryski, Vladimir Smirnov and many
others.

relay is now nanotube written by Roman Grytskiv, Andrei Vereha, and Gyanendra
Singh from our Graphite team, (it was preceded by carbon-c-relay written by Fabian
Groffen)

go-carbon for storage, written by Roman Lomonosov

My story today is mainly about the storage program: go-carbon.

https://github.com/go-carbon/carbonapi
https://github.com/bookingcom/carbonapi
https://github.com/dgryski
https://github.com/Civil
https://github.com/bookingcom/nanotube
https://github.com/grzkv
https://github.com/avereha
https://github.com/gksinghjsr
https://github.com/grobian/carbon-c-relay
https://github.com/grobian
https://github.com/go-graphite/go-carbon
https://github.com/lomik

Just as an exploration

I came upon our graphite go stack in a hackathon in 2018. Then later that year I learned
about the Gorilla timeseries data compression algorithm. When I tried to figure out what
compression algorithm graphite is using, I noticed that it's not compressing data. So I
decided to give it a shot by introducing the algorithm to the system.

What is Whisper

In graphite, each metric is saved in a file, using the a round-robin database format, named
whisper. Important properties:

Data point addressable: given a random timestamp and a target archive, its location
could be inferred in the whisper file, which means that it is programmably trivial to
support out-of-order data and rewrite

Fixed size: each data point has a fixed size of 12 bytes

https://www.aosabook.org/en/graphite.html

What is Gorilla compression

An compression algorithm published in VLDB '15: Gorilla: Facebook's Fast, Scalable,
In-Memory Time Series Database

It has great compression performance for time series data (payload dependent)

It has seen wide adoption since then: M3DB, Prometheus, Timescale, VictoriaMetrics,
etc.

https://www.vldb.org/pvldb/vol8/p1816-teller.pdf
https://m3db.github.io/m3/m3db/
https://fabxc.org/tsdb/
https://blog.timescale.com/blog/time-series-compression-algorithms-explained/
https://medium.com/faun/victoriametrics-achieving-better-compression-for-time-series-data-than-gorilla-317bc1f95932

The core of the Gorilla algorithm

Delta encoding for timestamps
To be precise, it's actually the delta of delta

XOR for values
Built on the assumption that time series data tend to have constant/repetitive values,
or values fluctuating within a certain range, this means that XOR with the previous
value often has leading and trailing zeros, and we can only save mostly just the
meaningful bits

Best case example

timestamp value

#1 1600000000 0

#2 1600000001 0

#3 1600000002 0

... ... 0

#100 1600000099 0

With the compression algorithms introduced in the gorilla paper, other than the first two
data points, the rest of them could be compressed with 2 bits (768 bits if uncompressed).

How to combine Gorilla and Whisper

A new file format needs to be designed from scratch in order to compress data points using
the gorilla algorithm.

CWhipser (Compressed Whisper)

Still a round robin database

File size isn't fixed (would grow/extend over time)

Archives are split into many blocks (ideally consist of 7200 data points per block)

No longer data point addressable (means hard to support rewrite and limited out-of-
order range)

Result

New challenge

While now that go-carbon can save 10+ million metrics in a single instance, the query
index (trigram index) that we are using on production is a new ceiling. This was one of th
reason that in practice, our go-carbon instance didn't usually serve more 5 millions metrics.

Globbing graphite metrics

A most simple graphite query: sys.cpu.loadavg.app.host-0*

It's basically the same as globbing in shell: ls /sys/cpu/loadavg/app/host-0*

filepath.Match/Glob (Go stdlib)

Pro: simple to implement

Con: high performance cost in a large file tree (millions of files)

filepath.Glob in Go is an userspace implementation, so it first needs to ask the kernel
for all the files and then globs over it. Therefore the overhead is a high when serving
millions of files.

Trigram (part 1)

There is alternative implementation in go-carbon, which is using trigram, originally
implemented by Damian Gryski.

TLDR: it breaks downs all the metrics as trigrams, and maps the trigram to the metrics (an
inverted index). A glob query is also convert as a trigrams, then intersects the metric
trigrams and query trigrams, then it would use the glob to make sure the files match the
query.

Trigram (part 2)

Pro:

faster than standard library (no syscalls after index, and file list are cached in memory)

Con:

index is expensive to build when dealing higher number of metrics (above 5 millions or
more)

result returned by trigram index aren't always matching the query, so it still falls back to
filepath.Match to double check

(trigram itself is a pretty big topic, so sorry that I can't explain all its glory too much)

Trie + NFA/DFA

TLDR: index all the metrics in go-carbon instance with trie, compile the glob queries first as
NFA (then DFA during walking). And walking over the trie and NFA/DFA at the same time.

More details about NFA and DFA could be found in
https://swtch.com/~rsc/regexp/regexp1.html

https://swtch.com/~rsc/regexp/regexp1.html

Trie: indexing all the metrics

NFA: representing the globbing expressions

DFA: dynamically converting from nfa while walking
trie index tree

Trie + NFA/DFA

Pro:

faster index time

less memory usage

no standard library fallback

better/predictable performance

Con:

Certain types of queries are faster using trigram (like foo.*bar.zoo , because of the
leading star, the new index algorithm needs to travel the whole namespace, however,
arguably, you can design your metric namespace properly to avoid these types of
query)

Result

Tips

More common names should come before less common and unique names in the metric:
less memory usage and faster query.

sys.cpu.loadavg.app.host-0001 performs better than sys.app.host-
0001.cpu.loadavg using trie index + nfa/dfa.

Because in the first naming pattern, sys.cpu.loadavg is just one copy of string in the trie
index and comparison is done only once.

Usage

Challenges on rolling out compressed whisper at Booking
Out of order (it's limited and depends on retention policy in cwhisper)

Rewrite

Trie+NFA/DFA index solution made it to our production!

note: for ooo and rewrite support, most of the timeseries database shares the same
drawback. it's all about tradeoff like all other CS techs. You can't eat your cake and have it
too.

Debugging and testing

For working on new file format, being able to analyze the bytes and tooling for
migrations: cmd/compare, cmd/dump, etc

Testing using production queries

Fuzzing and randomized input

https://github.com/go-graphite/go-whisper/blob/master/cmd/compare.go
https://github.com/go-graphite/go-whisper/blob/master/cmd/dump.go

Thoughts

Special thanks to Alexey Zhiltsov (best sysadmin) and our Graphite team

Study a problem well and applying well-researched algorithms onto existing system
could yield nice result

It was a great learning journey

https://github.com/azhiltsov

